3f2 Hypergeometric Series and Periods of Elliptic Curves
نویسنده
چکیده
We express the real period of a family of elliptic curves in terms of classical hypergeometric series. This expression is analogous to a result of Ono which relates the trace of Frobenius of the same family of elliptic curves to a Gaussian hypergeometric series. This analogy provides further evidence of the interplay between classical and Gaussian hypergeometric series.
منابع مشابه
Hasse Invariants for the Clausen Elliptic Curves
Gauss’s 2F1 ( 1 2 1 2 1 | x ) hypergeometric function gives periods of elliptic curves in Legendre normal form. Certain truncations of this hypergeometric function give the Hasse invariants for these curves. Here we study another form, which we call the Clausen form, and we prove that certain truncations of 3F2 ( 1 2 1 2 1 2 1 1 | x ) and 2F1 ( 1 4 3 4 1 | x ) in Fp[x] are related to the charac...
متن کاملClausen's theorem and hypergeometric functions over finite fields
We prove a general identity for a 3F2 hypergeometric function over a finite field Fq, where q is a power of an odd prime. A special case of this identity was proved by Greene and Stanton in 1986. As an application, we prove a finite field analogue of Clausen’s Theorem expressing a 3F2 as the square of a 2F1. As another application, we evaluate an infinite family of 3F2(z) over Fq at z = −1/8. T...
متن کاملValues of Gaussian Hypergeometric Series
Let p be prime and let GF (p) be the finite field with p elements. In this note we investigate the arithmetic properties of the Gaussian hypergeometric functions 2F1(x) =2 F1 „ φ, φ | x « and 3F2(x) =3 F2 „ φ, φ, φ , | x « where φ and respectively are the quadratic and trivial characters of GF (p). For all but finitely many rational numbers x = λ, there exist two elliptic curves 2E1(λ) and 3E2(...
متن کاملHypergeometric Series and Periods of Elliptic Curves
In [7], Greene introduced the notion of general hypergeometric series over finite fields or Gaussian hypergeometric series, which are analogous to classical hypergeometric series. The motivation for his work was to develop the area of character sums and their evaluations through parallels with the theory of hypergeometric functions. The basis for this parallel was the analogy between Gauss sums...
متن کاملIntegrals involving complete elliptic integrals
We give a closed-form evaluation of a number of Erd elyi-Kober fractional integrals involving elliptic integrals of the rst and second kind, in terms of the 3F2 generalized hypergeometric function. Reduction formulae for 3F2 enable us to simplify the solutions for a number of particular cases. c © 1999 Elsevier Science B.V. All rights reserved.
متن کامل